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Preface 
 
This idea is simply in the concept stages, it has no implementation for proof. The 
concept, however, appears sound. If you find success or failure in practical 
usage, please notify the author at: midnight@graphicspapers.com. 
 
Introduction 
 
When building a BSP tree, it is most often necessary to find a reasonable 
balance between “fewest splits” (i.e. smallest tree) and “least depth” (i.e. best 
balance of nodes.) In most applications fewest splits tend to be more important, 
unfortunately, this is a most time consuming task. 
 
Many applications that require BSP trees use a heuristic to determine a balance 
between “fewest splits” and “least depth”. It is in this balance, that we find hope 
for an efficient solution. 
 
It can be said, that because we’re searching for a balance between depth and 
splits, there are a certain number of potential polygons (acting as splitters) that 
will result in the deepest tree, and should not be considered, even if they result in 
nearly no splits. 
 
Given these criteria, we can find a range of the top contenders for least depth, 
and from them find the contender that results in the fewest splits.  As long as we 
have enough “least depth” polygons to choose from, we’ll find our target balance. 
 
By doing this, we avoid the computationally expensive (and exhaustive) search 
for the fewest splits, and focus our energy on the least depth. From this reduced 
set, we find fewest splits, reducing our computation time. 
 
Finding the top contenders for least depth 
 
Consider a unit sphere. This sphere can be quantized into a set of n points that 
define the unit sphere.  These points, when considered relative to the center of 
the unit sphere will generate a set of n vectors (this is sometimes referred to as a 
Gaussian map). 
 
These vectors will be used to determine n lists of polygons (“splitter groups”), one 
polygon group per vector. To classify each polygon, simply find the vector whose 



angle is closest to the polygon’s normal (using a dot product) and place it into the 
appropriate group. 
 
Each group is now sorted by each polygon’s D (from the plane equation.) 
 
If you consider a single group, you’ll find that it contains a list of polygons that are 
nearly coplanar, with the error bounded by the difference in angle from its 
neighbors of quantized vectors. In other words, each group contains nearly 
coplanar polygons that sequentially (sorted on D) cut through the scene. 
 
Assuming an evenly distributed dataset, it can be said that because each group 
is sequentially sorted you can visit each polygon in the group, split the entire 
dataset against that polygon and find that each successive polygon will 
incrementally raise the polygon count on one side, and decrease the count on 
the opposite side. If the database were evenly distributed, you would merely 
need to find the center of the list to find the “least depth” polygon for any 
particular group. Most datasets are rarely organized so evenly distributed. 
Because of this, we use a binary search through each group to find the best 
balance for that group. The polygon within each group is marked as the “least 
depth polygon.” 
 
During the binary search, since we’re doing the work, we’ll keep track of the 
number of splits for each polygon. We’ll need this later. 
 
With each group categorized, sorted and searched, it’s becomes trivial task to 
find the group whose “least depth polygon” results in the least depth across all 
groups. This will be the “least depth polygon” for the entire scene (again, 
bounded by the error of the angle between neighboring quantized vectors of the 
unit sphere.) 
 
The groups are now sorted according to the “least depth polygon” in each. 
 
Narrowing in on a good balance 
 
If there are n groups of polygons, then we have n “least depth polygons” (in 
sorted order of efficiency.) If n was chosen based on a heuristic which 
determines a reasonable threshold between “least depth” and “fewest splits” then 
there is a good chance that our balance between “least depth” and “fewest splits” 
can be obtained by one of the “least depth polygons”. 
 
To put a finer point on it, our “least depth polygons” will ideally (based on the 
heuristic) contain a range of polygons that will be acceptable for the “least depth” 
portion of our balance between “least depth” and “fewest splits.” 
 
This is not necessarily true, however, as it is possible that each “least depth 
polygon” will all end up with a perfect “least depth” leaving the proper balance 



between “least depth” and “fewest splits” outside of the range of our list of “least 
depth polygons”. However, statistically speaking, this would seem to be a rare 
oddity. 
 
Because our set of “least depth polygons” is sorted, and because each “least 
depth polygon” contains it’s contribution to splits and depth of the tree, we can 
linearly search this list for the best balance between depth and splits. 
 
Making it faster 
 
Because a polygon has two sides, which equally subdivide space, we don’t need 
to use an entire unit-sphere. We can simplify our task by using a unit semi-
sphere. When classifying each polygon, we can simply negate the normals of 
back-facing polygons to the unit semi-sphere. 
 
Polygon classification can be expensive [(polygonCount * n) dot products.] To 
reduce this, we can implement yet another binary search. The unit semi-sphere 
can be subdivided much like a quad-tree. Four vectors are centered in each 
quadrant in the semi-sphere. Each polygon is then classified to one of the four 
quadrants. Each quadrant is then subdivided, four more vectors are generated 
for each sub-quadrant, and the list of polygons in each quadrant is classified to a 
sub-quadrant. This process continues recursively until the subdivision level 
results n vectors covering the semi-sphere. 
 
 
 
 
 
 
 


